Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38399668

ABSTRACT

Metarhizium rileyi is an entomopathogenic fungus that naturally infects the larvae of Spodoptera frugiperda, and has biocontrol potential. To explore more natural entomopathogenic fungi resources, a total of 31 strains were isolated from 13 prefectures in Yunnan Province. All the strains were identified using morphology and molecular biology. The genetic diversity of the 31 isolates of M. rileyi was analyzed using inter-simple sequence repeat (ISSR) techniques. Seven primers with good polymorphism were selected, and fifty-four distinct amplification sites were obtained by polymerase chain reaction amplification. Among them, 50 were polymorphic sites, and the percentage of polymorphic sites was 94.44%. The thirty-one strains were divided into eight subpopulations according to the regions. The Nei's gene diversity was 0.2945, and the Shannon information index was 0.4574, indicating that M. rileyi had rich genetic diversity. The average total genetic diversity of the subpopulations in the different regions was 0.2962, the gene diversity within the populations was 0.1931, the genetic differentiation coefficient was 0.3482 (>0.25), and the gene flow was 0.9360 (<1). The individual cluster analysis showed that there was no obvious correlation between the genetic diversity of the strains and their geographical origin, which also indicated that the virulence of the strains was not related to their phylogeny. Thus, the genetic distance of the different populations of M. rileyi in Yunnan Province was not related to the geographical distance. The virulence of those 32 strains against the 3rd-instar larvae of S. frugiperda were varied with the differences in geographical locations. On the 10th day of inoculation, seventeen strains had an insect mortality rate of 70.0%, and seven strains had an insect mortality rate of 100%. The half-lethal times of the M. rileyi SZCY201010, XSBN200920, and MDXZ200803 strains against the S. frugiperda larvae were less than 4 d. Thus, they have the potential to be developed into fungal insecticidal agents.

2.
Insects ; 14(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36975945

ABSTRACT

Spodoptera frugiperda is one of the most destructive crop pests in the world. Metarhizium rileyi is an entomopathogenic fungus specific for noctuid pests and is a very promising prospect in biological control against S. frugiperda. Two M. rileyi strains (XSBN200920 and HNQLZ200714) isolated from infected S. frugiperda were used to evaluate the virulence and biocontrol potential to different stages and instars of S. frugiperda. The results showed that XSBN200920 was significantly more virulent than HNQLZ200714 to eggs, larvae, pupae, and adults of S. frugiperda. In the larvae infected with the two M. rileyi strains, the activity of three protective enzymes (including peroxidase (POD), superoxide dismutase (SOD), catalase (CAT)) and two detoxifying enzymes (including glutathione-S transferase (GST) and carboxylesterase (CarE)) increased firstly and then decreased. The expression levels of protective enzymes and detoxification enzymes in larvae treated with XSBN200920 were greater than with HNQLZ200714. Furthermore, antioxidant stress-related gene (MrSOD and MrCAT family genes) expression in the two strains was measured by RT-qPCR (real-time quantitative PCR). The expression of these genes was significantly higher in the XSBN200920 strain compared to HNQLZ200714. There were also significant differences in the sensitivity of the two strains to the growth of different carbon and nitrogen sources and oxidative stress agents. In addition, the activity expression of antioxidant enzymes on the third day of culturing in XSBN200920 was significantly higher than with HNQLZ200714. In summary, the high virulence of M. rileyi XSBN200920 was not only determined by the expression levels of protective and detoxifying enzymes of the host but also regulated by the growth of entomogenic fungi and the resistance to the oxidative stress against S. frugiperda at different stages and instars. This study provides a theoretical fundament for the systematic control of Spodoptera frugiperda using Metarhizium rileyi.

3.
Environ Entomol ; 47(4): 969-981, 2018 08 11.
Article in English | MEDLINE | ID: mdl-29850795

ABSTRACT

The coffee white stemborer, Xylotrechus quadripes Chevrolat (Coleoptera: Cerambycidae), feeds primarily on Coffea arabica L. (Gentianales: Rubiaceae) with its egg, larva, and pupa being developed within the trunk. The detection of chemosensory-related cues linked to adult mating, host seeking, and recognition is driven by three chemoreceptor gene repertoires of odorant (ORs), gustatory (GRs), and ionotropic (IRs) receptors as well as sensory neuron membrane proteins (SNMPs). Yet, information on these genes involved in chemoreception is unavailable in X. quadripes and relatively poor in the cerambycid beetles. Here, we presented the identification of four chemosensory transmembrane proteins from the antennal transcriptome of X. quadripes, including 33 ORs, five GRs, 18 IRs, and four SNMPs. Phylogenetic analysis classified the ORs into groups 1, 2, 3, 7, and olfactory coreceptor (Orco), showing three potential candidates (OR13, OR17, and OR21) for the sensing of male sex pheromones. The IRs were clustered into 10 orthologous groups, with additional copies for IR41a, IR64a, and IR75 clades. Four SNMPs were distributed in four independent clades, possibly representing a complete set in this species. Expression profiles revealed that all the genes were highly expressed in antennae, suggesting their olfactory roles. In addition, most of the genes showed the expression in nonantennal tissues including thoraxes, abdomens, wings, and legs, suggesting their involvement in nonchemosensory functions. Of notice, a highly conserved coreceptor IR25a displayed male-biased expression in the antennae, as the first presence in the cerambycid beetles. This study has established reference resources for understanding the mechanisms underlying the interactions between/within this beetle and its host plants.


Subject(s)
Arthropod Antennae/metabolism , Coleoptera/genetics , Insect Proteins/genetics , Membrane Proteins/genetics , Transcriptome , Animals , Coleoptera/metabolism , Female , Insect Proteins/metabolism , Male , Membrane Proteins/metabolism , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...